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What is Reinforcement Learning?

Up to this point we’ve been mostly within the regime of supervised learning:
Given some labelled data, train a model to minimise loss, then deploy to
classify new data.

1 We have access to labelled training data, and only deploy the agent after we
get good performance. Agent only sees “real world” once it’s already
performing well

2 Data is i.i.d between batches
3 No planning required, future predictions don’t depend on past predictions

RL is vastly different: Agent takes actions in an interactive environment,
receive scalar reward as feedback. This lends itself to several problems:

1 Sparse reward: Very little feedback during learning
2 Reward attribution: Hard to tell which action was the one that caused the

good reward
3 No ground truth Optimal or even good policies may be unknown, (in pure RL

settings) no data from good players to compare against
4 Explore vs. Exploit tradeoff:

1 Exploration: Taking actions to learn how the world works (and improve the
policy).

2 Exploitation: Taking actions that maximise the expected sum of reward given
current policy.

5 Online only: No clear distinction between training and testing. Agent gets
dumped in the environment and must learn on the fly.
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Multi-Armed Bandits

The simplest type of RL environment with interaction: (equivalent to MDP
with 1-state)

Agent has a set of “arms” (actions) A. Environment has a family of reward
distributions {pa}a∈A for each action.

On timestep t, agent chooses action at and receives reward rt ∼ pat (·).
Distributions pi are unknown to agent.

Want to always choose the arm with the highest expected payout:

q∗(a) = E[rt |at = a]

Need to balance trying all the arms to get a good estimate of the value of
each arm, v.s. always trying to pull the best arm.
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Bandito Algorithm

Keep track of Q̂(a), the estimated value of each arm after t arm-pulls

Q̂t(a) =
sum of rewards when a taken up to t

number of times a taken prior to t
=

∑t−1
i=1,ai=a rt∑t−1
i=1,ai=a 1

Q̂t(a) represents the empirical average reward obtained from arm a up to
time t.

In practice, easier to init Q̂1(a) = R̂1(a) = N̂1(a) = 0 and

R̂t+1(a)← R̂t(a) + rtJat = aK N̂t+1(a)← N̂t(a) + Jat = aK

Q̂t+1(a)←
R̂t+1(a)

Nt+1(a)

where JPK = 1 if P evaluates to True, else JPK = 0.

Choose arm with highest estimated payout: at := argmax Q̂t(a).

Problem: Can get stuck with a suboptimal arm.
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Encouraging Exploration

1 First approach: Just do random stuff every now and again, hope for the best

aϵ−greedy
t =

{
Do random action Prob ϵ

argmaxa′ Qt(a
′) Prob 1− ϵ

2 Better approach: Give a bonus to actions seldom taken

aUCBt = argmax
a′

(
Qt(a

′) + c

√
ln t

Nt(a′)

)

3 Intuition: Error of Qt(a) is ∝ 1√
Nt(a)

. Add a bonus proportional to variance,

so actions with high variance ≡ few samples get explored

4 Add ln t to numerator to ensure every action is sampled infinitely often (in
case you get an unlucky run). ln t is optimal because math. c = 2 works
good in practice.
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Agent-Environment Interaction Loop (MDPs)

Environment has states S, actions A, rewards R, environment distribution
p : S ×A× S ×R → [0, 1].

Think of p(s, a, s ′, r) as Pr(st+1 = s ′, rt+1 = r |st = s, at = a). We write
p(s ′, r |s, a) for clarity.

In timestep t, agent samples at ∼ π(st) from policy πt . Environment samples
(st+1, rt+1) ∼ p(· | st , at).
Generates an interaction history, or trajectory

s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . .

Agent may choose to update choice of policy at any timestep. Most RL
algorithms focus on the mechanism that does this.

Figure: Agent-Environment interaction loop
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Objective of the Agent

At timestep t, the return Gt is the sum of all future rewards:

Gt = rt+1 + rt+2 + rt+3 + . . .

Goal: Maximise the return.
For episodic (finite length interaction) environments of maximum duration T ,
return Gt = rt+1 + rt+2 + . . .+ rT well defined.

Problems: (for continuing environments)
The return may diverge or be undefined (compare 2, 2, 2, 2, . . . with
1, 1, 1, 1, . . .).
The agent might be lazy (compare 1, 1, 1 . . . with 0, 0, . . . , 0, 1, 1, 1, . . .).
The environment is stochastic, and the rewards are often up to chance. How
to trade-off unlikely big rewards with likely small rewards?
May desire rewards now to be more valuable than rewards later: $100 now?
Or $110 in a year?

Solutions:
Add a discount factor γ ∈ [0, 1) so rewards more imminent are worth more,
and the return is always well defined.

Gt = rt+1 + γrt+2 + γ2rt+3 + . . .

Want agent to choose actions to maximise the expected return.
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Core Assumptions

These kind of environments are called Markov Descision Processes (MDPs), and
have the following “nice” properties

1 Stationary: The environmental distribution p is fixed and does not change
over time

Old data is as useful as new data

2 Markovian: The behaviour of the environment at timestep t depends only
on the current state st and action at .

Only need to consider the current state to act optimally, the past is irrelevant

3 Fully Observable: The state is a full description of the world

Agent always has access to sufficient information to choose the optimal action

4 Reward Hypothesis:
“That all of what we mean by goals and purposes can be well thought
of as the maximization of the expected value of the cumulative sum of a
received scalar signal (called reward).” -Rich Sutton

Reward alone is sufficient to communicate any possible goal or desired
behaviour
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Value Function

Want to define the “goodness” (value) of a state, so the agent can take
actions to move towards “good” states, and away from “bad” states.

The value of a state depends also on how the agent chooses actions, called a
policy π : S × A→ [0, 1]. Actions are sampled a ∼ π(·|s).

Value Function

Vπ(s) =Eπ[Gt |st = s]

=Eπ[rt+1 + γrt+2 + γ2rt+3 + . . . |st = s]

(Expectation is also with respect to the environment p.)
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Bellman Equation

We note that since

Gt = rt+1 + γrt+2 + γ2rt+3 + . . .

= rt+1 + γ(rt+2 + γrt+3 + . . .)

= rt+1 + γGt+1

we can then define the value function recursively,

Vπ(s) = Eπ[Gt | st = s]

= Eπ[rt+1 + γGt+1 | st = s]

= Eπ[rt+1 | st = s] + γEπ[Gt+1 | st = s]

=
∑
a

π(a|s)
∑
s′,r

p(s ′, r |s, a)r

+ γ
∑
a

π(a|s)
∑
s′,r

p(s ′, r |s, a)Eπ[Gt+1 | st+1 = s ′]

=
∑
a

π(a|s)
∑
s′,r

p(s ′, r |s, a) (r + γVπ(s
′))
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Policy Evaluation

This gives the Bellman equation

Bellman Equation

Vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s ′, r |s, a) (r + γVπ(s
′))

Equation is linear in Vπ(·), giving a set of linear simultaneous equations.

Given policy π, can now easy solve for Vπ(s1),Vπ(s2), . . .

Computing Vπ from π is called policy evaluation.
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Value Function (simplified)

Assume policy π : S → A is deterministic, define transition probability
T (s ′ | s, a) :=

∑
r∈R p(s ′, r |s, a) and assume reward rt+1 := R(st , at , st+1) is

deterministic function of st , at , st+1.

Bellman Equation

Vπ(s) =
∑
s′

T (s ′|s, a) (R(s, a, s ′) + γVπ(s
′))

where a = π(s).

Only need to sum over all states to find Vπ(s) in terms of {Vπ(s1), . . . ,Vπ(sn)}.
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Example Environment

States S = s0, sL, sR , actions A = {aL, aR}, rewards R = {0, 1, 2}.
Each transition indicates if an action is taken, the reward returned and which
state to transition to

What is the best action from state s0?
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Optimal Bellman

Policy π1 is better than π2 (π1 ≥ π2) if ∀s.Vπ1(s) ≥ Vπ2(s). A policy is
optimal if it is better than all other policies.

Theorem: An optimal policy π∗ always exists. Define optimal value function
as

V∗(s) := Vπ∗(s) ≡ max
π

Vπ(s)

Optimal Bellman Equation

V∗(s) = max
a

∑
s′

T (s ′|s, a) (R(s, a, s ′) + γV∗(s
′))

Gives a set of non-linear simultaneous equations with variables V∗(s1),V∗(s2), . . .
Problem: No clear way to solve for V∗(·)
Can’t just compute Vπ using policy evaluation for all π, as there are |A||S| many
to choose from.
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Problem: No clear way to solve for V∗(·)
Can’t just compute Vπ using policy evaluation for all π, as there are |A||S| many
to choose from.
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Policy Improvement

Obviously we have that

V∗(s) = max
a

∑
s′

T (s ′|s, a) (R(s, a, s ′) + γV∗(s
′))

≥
∑
s′

T (s ′|s, π(s)) (R(s, π(s), s ′) + γV∗(s
′)) = Vπ(s)

Given a policy πn, can feed it through the optimal Bellman equation to get a
better policy πn+1

Policy Improvement

πn+1(s)← argmax
a

∑
s′

T (s ′|s, a) (R(s, a, s ′) + γVπn(s
′))
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Policy Iteration

Policy Improvement (I)

πn+1(s)← argmax
a

∑
s′

T (s ′|s, a) (R(s, a, s ′) + γVπn(s
′))

Policy Evaluation (E)

Solve
Vπ(s) =

∑
a

π(a|s)
∑
s′,r

p(s ′, r |s, a) (r + γVπ(s
′))

for Vπ(s1),Vπ(s2), . . ..

Start with arbitrary policy π0.

Note that π∗ is fixed point of policy improvement.

Alternate until policy is stable

π0
E−→ Vπ0

I−→ π1
E−→ Vπ1

E−→ π2
I−→ Vπ2

E−→ . . .
I−→ π∗

E−→ Vπ∗
I−→ π∗

Theorem: Policy iteration converges to optimal policy in finitely many steps!
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Problems with Policy Iteration

Requires white-box access to the environmental distribution T and reward
function R.

Only works for environments with few enough states and actions to sweep
through.

For the moment, we weaken only the first assumption, and assume the
environment is now a black box, from which state-reward pairs (s ′, r) can be
sampled given state-action pairs (s, a) as input.
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Temporal Difference Learning

Goal: Perform policy evaluation without access to environmental distribution.

Motivation: Consider once again the value function:

Vπ(s) = E
a=π(s)

s′∼T (·|s,a)

[R(s, a, s ′) + γVπ(s
′)]

On timestep t, this is “on average”, equal to the actual reward rt+1, plus the
discounted value of the actual next state st+1.

Vπ(st) ≈ rt+1 + γVπ(st+1)

We define the TD-Error as the difference

δt := rt+1 + γVπ(st+1)− Vπ(st)

This then gives us an update rule to improve on our estimate V̂π of Vπ, similar to
SGD, called TD(0).

V̂π(st)←V̂π(st) + αδt

≡V̂π(st) + α
(
rt+1 + γV̂π(st+1)− V̂π(st)

)
where α ∈ (0, 1] is the learning rate.
Theorem: Given “nice” α, TD(0) guaranteed to converge to Vπ.
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Q-Value

Q-value is the expected return from state s, taking action a, and thereafter
following policy π.

Qπ(s, a) = Eπ[Gt |st = s, at = a]

Contrast with the value function

Vπ(s) = Eπ[Gt |st = s]

Q-value Bellman

Qπ(s, a) =
∑
s′

T (s ′|s, a) (R(s, a, s ′) + γQπ(s
′, a′))

where a′ = π(s ′)

Optimal Q-value Bellman

Q∗(s, a) =
∑
s′

T (s ′|s, a)
(
R(s, a, s ′) + max

a′
Q∗(s

′, a′)
)
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Q-value vs. Value

Can state Q in terms of V , and vice-versa.

Qπ(s, a) =
∑
s′

T (s ′|s, a) (R(s, a, s ′) + γVπ(s
′))

Vπ(s) =
∑
s′

T (s ′|s, π(s)) (R(s, a, s ′) + γQπ(s
′, π(s ′)))

Q∗(s, a) =
∑
s′

T (s ′|s, a) (R(s, a, s ′) + γV∗(s
′))

V∗(s) = max
a

∑
s′

T (s ′|s, a)
(
R(s, a, s ′) + γmax

a′
Q∗(s

′, a′)
)

(exercise to the reader...)
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Motivation for Q-Value

So far, we have been learning a policy π, and using π to compute Vπ.

Even if we were given V∗ directly, can’t recover π∗ without white-box access
to T and R (environment).

π∗(s) = argmax
a

∑
s′

T (s ′|s, a) (R(s, a, s ′) + γV∗(s
′))

However, given Q∗, we can directly recover π∗

π∗(s) = argmax
a

Q∗(s, a)

Idea: Learn Q∗ instead, recover policy π∗
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SARSA: On-Policy TD Control

Apply same argument as TD(0) to the Q-Value

Q∗(s, a) = E
s′∼T (·|s,a)

[R(s, a, s ′) + γQ∗(s
′, π∗(s

′))]

On timestep t, this is “on average”, equal to the actual reward rt+1, plus the
discounted Q-value of the actual next state-action pair st+1, at+1.

Q∗(st , at) ≈ rt+1 + γQ∗(st+1, at+1)

SARSA Update Rule

Q̂∗(st , at)← Q̂∗(st , at) + α
(
rt+1 + γQ̂∗(st+1, at+1)− Q̂∗(st , at)

)
where α ∈ (0, 1] is the learning rate.

Actions drawn from ε-greedy strategy

πε-greedy(s) =

{
do random stuff prob ε

argmaxa Q̂∗(s, a) prob 1− ε

Theorem: Under “niceness” conditions SARSA guaranteed to converge to Q∗.
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Q̂∗(st , at)← Q̂∗(st , at) + α
(
rt+1 + γQ̂∗(st+1, at+1)− Q̂∗(st , at)

)
where α ∈ (0, 1] is the learning rate.

Actions drawn from ε-greedy strategy

πε-greedy(s) =

{
do random stuff prob ε

argmaxa Q̂∗(s, a) prob 1− ε

Theorem: Under “niceness” conditions SARSA guaranteed to converge to Q∗.
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Q-Learning: Off-Policy TD Control

Why learn from at+1 when it was a random exploration action? Why not
instead learn from the action argmaxa′ Q(st+1, a

′) that should have been
taken?

Q-Learning Update Rule

Q̂∗(st , at)← Q̂∗(st , at) + α
(
rt+1 + γmax

a′
Q̂(st+1, a

′)− Q̂(st , at)
)

Actions taken via ε-greedy strategy over Q̂∗(s, a).

Theorem: Under “niceness” conditions Q-learning guaranteed to converge to Q∗.
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SARSA v.s. Q-Learning

SARSA Update Rule

Q̂∗(st , at)← Q̂∗(st , at) + α
(
rt+1 + γQ̂∗(st+1, at+1)− Q̂∗(st , at)

)
Q-Learning Update Rule

Q̂∗(st , at)← Q̂∗(st , at) + α
(
rt+1 + γmax

a′
Q̂(st+1, a

′)− Q̂(st , at)
)

Q-Learning (usually) tends to converge faster than SARSA, and chooses
more aggressive/risky moves

SARSA learns from the moves that were actually taken, including any
exploration

In “risky” environments, SARSA will learn to avoid getting near dangerous
situations (to avoid accidentally taking a very bad exploratory move).
Q-Learning will not.
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Beyond Tabular Learning

All the methods up to this point assume sweeping through all state-action
pairs is tractable

What about large/continuous state spaces?

State aggregation?
Parameterised policy πθ, learn best θ?
Craft a heuristic by hand?

In general, would like the agent to learn useful features for us

Something deep learning excels at!
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Difficulties with using Neural Networks for RL

Neural networks expect to be trained in a supervised learning fashion, with
batches of data fed in, loss computed, and gradients backpropagated.
Idea: Reduce the reinforcement learning problem to a supervised learning
problem?

Interaction with environment is NOT i.i.d

Collect many trajectories, dump into a buffer and shuffle

Rewards are sparse

ε-greedy explore, hope for the best

No ground truth to compare against

Bootstrap from current estimates (i.e. Q-Learning)
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Deep Q-Networks (DQN)

The Q-Value estimate Q̂∗(s, a; θ) is now stored as a network, with parameters
θ. Recall the TD-error for Q-Learning

δt = rt+1 + γmax
a′

Q∗(st+1, a
′; θ)− Q∗(st , at ; θ)

Idea: Accumulate experience (s i , ai , r i , s inew) via interaction, optimise θ to
minimise loss L(θ)

In practice, experience is accumulated in a buffer, and batches are sampled at
random to make data “more i.i.d”
Also use seperate set of parameters θtarget for the target network, copy weights
every so often for stability

L(θ) =
1

N

N∑
i=1

(
r i + γmax

a′
Q∗(snew, a

′; θtarget)− Q∗(st , at ; θ)
)2

Then, perform gradient update step over parameters

θ ← θ − α∇θL(θ)
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Deep Q-Networks (DQN) for Episodic Environments

Slightly modify the TD-error, depending if st+1 is a terminal state.

Assume environment returns (st+1, rt+1, dt+1) ∼ p(·|st , at), where dt+1

(done) indicates if the episode ended on timestep t + 1.

δt = yt − Q∗(st , at ; θ)

yt =

{
rt+1 dt+1 = True

rt+1 + γmaxa′ Q∗(st+1, a
′; θtarget) dt+1 = False

Loss function is now

L(θ) =
1

N

N∑
i=1

(yt − Q∗(st , at ; θ))
2
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CartPole

State space (x , v , θ, ω) ⊆ R4, representing

−4.8 ≤ x ≤ 4.8, position of the cart (meters)
−∞ ≤ v ≤ ∞, velocity of the cart (meters/second)
−28◦ ≤ θ ≤ 28◦, angle of the pole (measured from vertical) (degrees)
−∞ ≤ ω ≤ ∞, angular velocity of the pole (degrees/second)

Actions: {L,R} Apply a force of 10 newtons to the left/right of the cart

Environment: Takes old state st = (xt , vt , θt , ωt) and force at ∈ L,R,
simulates the physics of the cartpole system using Euler’s method in a 20ms
timestep, returns the new state space st+1 = (xt+1, vt+1, θt+1, ωt+1) and
reward rt+1 = 1

Episode terminates if |x | ≥ 2.4 (the cart rolls off the track) or |θ| ≥ 12◦ (the
pole moves too far off vertical) or 500 timesteps (= 10 seconds) elapse.

Initial state sampled uniformly from [−0.05, 0.05]4 (to avoid agent
memorising a sequence of actions).

Agent knows nothing about poles, or carts, or the laws of physics. Has to
infer all of this from a vector of 4 numbers, and then determine a strategy to
keep the cart centred and the pole upright
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SpinnyPole

State space (x , v , θ, ω) ⊆ R4, representing

−4.8 ≤ x ≤ 4.8, position of the cart (meters)
−∞ ≤ v ≤ ∞, velocity of the cart (meters/second)
−28◦ ≤ θ ≤ 28◦, angle of the pole (measured from vertical) (degrees)
−∞ ≤ ω ≤ ∞, angular velocity of the pole (degrees/second)

Actions: {L,R} Apply a force of 10 newtons to the left/right of the cart

Environment: Takes old state st = (xt , vt , θt , ωt) and force at ∈ L,R,
simulates the physics of the cartpole system using Euler’s method in a 20ms
timestep, returns the new state space st+1 = (xt+1, vt+1, θt+1, ωt+1) and
reward rt+1 =???

Episode terminates if |x | ≥ 2.4 (the cart rolls off the track) or |θ| ≥ 12◦ (the
pole moves too far off vertical) or 1000 timesteps (=20 seconds) elapse.

Initial state sampled uniformly from [−0.05, 0.05]4 (to avoid agent
memorising a sequence of actions).

Agent knows nothing about poles, or carts, or the laws of physics. Has to
infer all of this from a vector of 4 numbers, and then determine a strategy to
keep the cart centred and the pole upright spin as fast as possible without
moving off track
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Vanilla Policy Gradient (VPG)

Learn π directly. π is stochastic, push up (down) probability π(a|s) of good
(bad) actions, converge to π∗.

Policy πθ is parameterised by θ, such that ∇θπθ exists

Measure of performance J(θ) (gain)

Update step θ ← θ + η∇̂θJ(θ)

Learn preferences h(s, a,θ), and (assuming |A| “small”) define softmax policy

πsoftmax
θ (a|s) = exp(h(s, a,θ)/T )∑

a′ exp(h(s, a
′,θ)/T )

where T is temperature (hyperparamter).

Use neural network to learn h(s, a,θ)
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Softmax vs. greedy

Advantages

πε-greedy always does uniformly random actions when exploring. πsoftmax
θ is still

stochastic, but biased towards good moves
πsoftmax
θ is continuous w.r.t preferences h(s, a,θ). πε-greedy might dramatically

change behaviour in response to small perturbations in Q̂∗ ≡ better
convergence

Disadvantages

More computationally expensive/more complex
πsoftmax
θ will play near uniform for two states with similar values. πε-greedy will

choose the best
πsoftmax
θ will only converge to deterministic policy with a temperature schedule

(especially for states with similar value), hard to choose temperature scale a
priori/requires domain knowledge
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Log-derivative trick

Note that
d

dx
log f (x) =

1

f (x)
· d
dx

f (x)

Hence, multiplying by f (x),

d

dx
f (x) = f (x)

d

dx
log f (x)

Or, in the form we will use it

∇θPθ(x) = Pθ(x)∇θ logPθ(x)
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Policy Gradient Framework

Assume episodic environment, length t ′, no discount γ = 1. Assume fixed
starting state s0 = sstart.

Define J(θ) = Vπθ
(sstart).

Let τ = sstart, a0, r1, s1, . . . , st′ denote a trajectory

G (τ) =
∑t′

t=0 rt is the undiscounted return for trajectory τ .

Pr(τ |θ) =
∏t′

k=t πθ(ak |sk)T (sk+t |sk , ak) is the probability of sampling τ from
environment given θ.

∇θJ(θ) = ∇θEτ∼πθ
[G (τ)]

= ∇θ

∑
τ

Pr(τ |θ)G (τ)

=
∑
τ

∇θPr(τ |θ)G (τ)

=
∑
τ

Pr(τ |θ) (∇θ log Pr(τ |θ)G (τ)) (Log Derivative trick)

= Eτ∼πθ
[∇θ log Pr(τ |θ)G (τ)]
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Note that

∇θ log Pr(τ |θ) = ∇θ log
t′∏

k=t

πθ(ak |sk)T (sk+t |sk , ak)

= ∇θ

t′∑
k=t

log πθ(ak |sk)T (sk+t |sk , ak)

= ∇θ

t′∑
k=t

log πθ(ak |sk) + logT (sk+t |sk , ak)

= ∇θ

t′∑
k=t

log πθ(ak |sk) +
�����������

∇θ

t′∑
k=t

logT (sk+t |sk , ak)

= ∇θ

t′∑
k=t

log πθ(ak |sk)
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Vanilla Policy Gradient (VPG)

∇θJ(θ) = Eτ∼πθ

∇θ

t′∑
k=t

log πθ(ak |sk)G (τ)


Clever trick 1: The future cannot affect the past

πθ(ai |si ) gets bumped by the full return G (τ). Obviously at has no effect on
r0, r1, . . . , rt−1

At timestep k , swap full return G (τ) with partial return
∑t′

j=k rj

∇θJ(θ) = Eτ∼πθ

∇θ

t′∑
k=t

log πθ(ak |sk)
t′∑
j=k

R(sj , aj , sj+1)


= Eτ∼πθ

∇θ

t′∑
k=t

log πθ(ak |sk)Qπθ
(sk , ak)
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Expected Grad-Log-Prob (EGLP) Lemma

Let Pθ be a parameterised probability distribution over random variable x . Then

Ex∼Pθ
[∇θ log Pθ(x)] = 0

Proof:

∑
x

Pθ(x) = 1

∇θ

∑
x

Pθ(x) = ∇θ1 = 0

∇θ

∑
x

Pθ(x) = 0∑
x

∇θPθ(x) = 0

Apply log-derivative trick ∑
x

Pθ(x)∇θPθ(x) = 0

Ex∼Pθ
[∇θ log Pθ(x)] = 0
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Corollary of EGLP: For any function b that depends only on state st ,

Eat∼πθ
[∇θ log πθ(at |st)b(st)] = 0

So, can add/subtract any such baseline function b into VPG without changing
the result (in expectation),

∇θJ(θ) = Eτ∼πθ

∇θ

t′∑
k=t

log πθ(ak |sk)
(
Qπθ

(sk , ak)− b(sk)

)
Clever trick 2: Choose b(st) = Vπθ

(st), the on-policy value function

∇θJ(θ) = Eτ∼πθ

∇θ

t′∑
k=t

log πθ(ak |sk)
(
Qπθ

(sk , ak)− Vπθ
(sk)

)
= Eτ∼πθ

∇θ

t′∑
k=t

log πθ(ak |sk)Aπθ
(st , at)


where Aπ(s, a) := Qπ(s, a)− Vπ(s) is the advantage function

Vπθ
learned by separate critic network.

Reduces variance, only update policy when critic disagrees
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WARNING

Everything beyond this point, I am less certain about. Where I make my best
guess, or am uncertain, I mark it with .
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Empirical Policy Gradient

Note: Police gradient uses gradient ascent, so we actually maximise loss!

Don’t blame me, the PPO paper use this convention too!

Define policy gradient “loss” (gain?)

LPG (θ) = Ê

 t′∑
k=t

log πθ(ak |sk)Aπθ
(st , at)


where Ê indicates the expectation is approximated by a batch of samples, and
Â(st , at) = Q̂(st , at)− V̂ϕ(st), where

Q(st , at) =
∑t′

k=t R(st , at , st+1) Q-value computed using empirical return

V̂ϕ(st) computed using critic network

Note that Â(st , at) has no dependance on θ.

However, this leads to destructively large policy updates

David Quarel (ARENA) Reinforcement Learning Basics Any% Speedrun 8th June 2023 48 / 62



D
ra
ft

Empirical Policy Gradient

Note: Police gradient uses gradient ascent, so we actually maximise loss!

Don’t blame me, the PPO paper use this convention too!

Define policy gradient “loss” (gain?)

LPG (θ) = Ê
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 t′∑
k=t

log πθ(ak |sk)Aπθ
(st , at)
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where Ê indicates the expectation is approximated by a batch of samples, and
Â(st , at) = Q̂(st , at)− V̂ϕ(st), where

Q(st , at) =
∑t′

k=t R(st , at , st+1) Q-value computed using empirical return

V̂ϕ(st) computed using critic network
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Importance Sampling

Main Idea: Use samples from one distribution to estimate the expected value of
a function under a different distribution.
In RL, policy π being learned about is target policy (usually π∗), policy
generating behaviour β is behaviour policy.

On-Policy: target=behaviour

SARSA: Target policy πε
∗, behaviour policy πε

∗ (on-policy)

Q-Learning: Target policy π∗, behaviour policy πε
∗ (off-policy)

If π is very different from β, high variance, bad learning.
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Importance Sampling

Given starting state st , the probability of a particular state-action trajectory from
timestep t to t ′

τ = at , st+1, at+1, st+2, at+2, . . . , at′−1, st′

is

Pr(τ |st , at,t′−1 ∼ π) = π(at |st)T (st+1|st , at)π(at+1|st+1) . . .T (st′ |st′−1, at′−1)

=
t′−1∏
k=t

π(ak |sk)T (sk+1|sk , ak)

Importance-sampling ratio: ρt:t′−1 The ratio of the likelihood of the trajectory
under target and behaviour policies.

ρt:t′−1 =

∏
k=t π(ak |sk)T (sk+1|sk , ak)∏
k=t β(ak |sk)T (sk+1|sk , ak)

=

∏
k=t π(ak |sk)∏
k=t β(ak |sk)

No dependancy on environment distribution T !
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Importance Sampling

Want to estimate Vπ, but only have returns Gβ
t obtained from β. Gβ

t has the
wrong expectation

E[Gβ
t |st = s] = Vβ(s)

Transform with the importance sampling ratio!

E[ρt:t′−1G
β
t |st = s] = Vπ(s)

( ) During policy gradient, data is sampled from πθold
, but target is πθ, so

we would rather optimise

Ê
[

πθ(at |st)
πθold

(at |st)
Â(st , at)

]
called the surrogate objective.
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Justifying the surrogate objective

Take LPG (θ), and subtract out log πθold
(at |st)Ât(st , at) (no dependence on θ,

maximising θ is unchanged)

argmax
θ

LPG (θ)

= argmax
θ

Ê

 t′∑
k=t

log πθ(ak |sk)Aπθ
(st , at)− log πθold

(at |st)Ât(st , at)


= argmax

θ
Ê

 t′∑
k=t

log
πθ(ak |sk)
πθold

(ak |sk)
Âπθ

(st , at)


log is monotonic/Jensens theorem/idk

= argmax
θ

Ê

 t′∑
k=t

πθ(ak |sk)
πθold

(ak |sk)
Âπθ

(st , at)
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Actor-Critic Method

Learn a policy πθ (actor) and a value Vϕ(s) (critic). Actor acts, critic
critiques.
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Trust Region Policy Optimisation (TRPO)

(Drop summations, write Ât ≡ Â(st , at) for brevity).
The goal is maximisation of LCPI (θ) w.r.t θ defined as

LCPI (θ) = E
[

πθ(at |st)
πθold

(at |st)
Ât

]
subject to the constraint

Ê
[
KL[πθold

(·|st) || πθ(·|st)]
]
≤ δ

to avoid the two distributions changing too much.

Here, KL(p||q) :=
∑

x p(x) log
p(x)
q(x) is the Kullback-Liebler divergence, or

KL-divergence, that measures the “distance” between two probability
distributions. Constrained optimisation is problematic to deal with, but
unconstrained optimisation with a KL-penalty

maximise
θ

E
[

πθ(at |st)
πθold

(at |st)
Ât − βKL[πθold

(·|st) || πθ(·|st)]
]

requires an additional hyperparameter β. Via experimentation, could not find a
single β suitable for many different environments.
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The goal is maximisation of LCPI (θ) w.r.t θ defined as

LCPI (θ) = E
[

πθ(at |st)
πθold

(at |st)
Ât
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Instead, allow for unconstrained optimisation, but “clip” the result, so the policy

can’t drift too far.

Letting rt(θ) =
πθ(at |st)
πθold(at |st )

denote the probability ratio, TRPO

maximises

LCPI (θ) = E
[

πθ(at |st)
πθold

(at |st)
Â(st , at)

]
= E

[
rt(θ)Â(st , at)

]
We define the clip “loss” as

LCLIP(θ) = Ê
[
min(rt(θ)Â(s), clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
for hyperparameter ϵ = 0.2.
Intuition: Clip the ratio rt(θ) inside [1− ϵ, 1+ ϵ], then take the min of the clipped
and unclipped to get a lower bound (pessimistic) on the unclipped objective.
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The critic is simply trained against the returns from the environment

LVFt (θ) =
1

2
(Vθ(st)− Gt)

2

We also add an entropy bonus to incentivise exploration by increasing the
entropy of the distribution. The entropy Hπ(s) of a policy π in state s is defined
as

Hπ(s) =
∑
a∈A

π(a|s) log 1

π(a|s)

Entropy can be though of as a measure of how “random” the distribution is.
Combine them all, with hyperparameters c1, c2.

Lt(θ)
CLIP+VF+S(θ) = Êt [L

CLIP
t (θ)− c1L

VF
t (θ) + c2Hπθ

(st)]

Maximise Lt(θ)
CLIP+VF+S(θ) w.r.t θ
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entropy of the distribution. The entropy Hπ(s) of a policy π in state s is defined
as

Hπ(s) =
∑
a∈A

π(a|s) log 1

π(a|s)

Entropy can be though of as a measure of how “random” the distribution is.
Combine them all, with hyperparameters c1, c2.

Lt(θ)
CLIP+VF+S(θ) = Êt [L

CLIP
t (θ)− c1L

VF
t (θ) + c2Hπθ

(st)]

Maximise Lt(θ)
CLIP+VF+S(θ) w.r.t θ
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1

p

H(X )

H(X ) = −p log2 p − (1− p) log2(1− p)

Figure: The entropy of a policy over two actions with π(a|s) = p
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TD(λ) using Eligibility Traces

TD(0) update

V̂π(st)← V̂π(st) + α
(
rt+1 + γV̂π(st+1)− V̂π(st)

)
Only provides an update based on the most recent state

What if the pivotal action was taken far in the past, that lead to this
desirable state?

One solution is to keep track of the Eligibility Trace, the number of times a state
has been visited, discounted geometrically via a parameter λ, called the trace
decay, and by γ, the discount rate.

E 0(s) := 0

E t(s) := γλE t−1(s) + δs,st

Motivation: States that are more recent/have bee
The discounting allows for more recent visits to contribute more to the count than
past visits (which may be valuable for non-stationary environments.)
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Generalised Advantage Estimation

Penalising TD updates using the eligibility trace, this gives us the update rule for
TD(λ). On timestep t, perform update

∀s ∈ S, V̂π(s) := V̂π(s) + αE t(s)
(
rt+1 + γV̂π(st+1)− V̂π(st)

)

Above expression can be unrolled for the advantage function (exercise to reader.)

Ât = δt + (γλ)δt+1 + . . .+ (γλ)T−t+1δT−1

where δt = rt + γV (st+1)− V (st).
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Robins-Monro Convergence conditions

The Robins-Monro convergence conditions are properties of the learning rate that
are usually required in most proofs to ensure convergence.
Let αt denote the learning rate at time t. Then the conditions are

∞∑
t=1

αt =∞ and
∞∑
t=1

α2
t <∞

Intuitively, the first condition ensures that the steps are large enough to eventually
overcome any initial conditions/random fluctuations, and the second condition
ensures that eventually the steps become small enough to ensure convergence.

An example of such a learning rate would be αt = 1/t.
Note that the usual method of choosing ∀t, αt = α ∈ R fails the RM conditions.
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